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A b s t r a c t

An array jeed combining system jor the recovery oj SNR loss due to antenna ~fiector deformation

has been implemented and is currently being evaluated on the Jet Propulsion Laboratory 34 meter

DSS-13 antenna. In this system, the defocused signal field captured by a focal plane army feed

is recovered using real-time signal processing and signal combining techniques. The current sig-

nal processing and signal combining algorithms am optimum under the assumption that the white

Gaussian noise processes in the received signals from diflervnt  array elements are mutually un-

correlated. Experimental data at DSS-13  indicate that these noise processes are indeed mutually

correlated. The main result oj this paper is an analytical derivation of the actual SNR performance

of the current suboptimal  signal combining algorithm in this correlated noises environment. The

analysis here shows that the combined signal SNR can either be improved or degraded depending on

the relation between the army signal and noise correlation c~ficient phases. Further performance

improvement will mquim  the development oj signal combirting  methods that take into account the

correlated noises.



I Introduction

Operation of deep space communication networks at higher carrier frequencies has the advantage of

greater antenna gains as well as increased bandwidths for enhancing telemetry capabilities. How-

ever, the use of higher frequencies also has certain disadvantages. These include more stringent

antenna pointing requirements and also larger receiving antenna SNR losses due to mechanical de-

formations of large reflector surfaces. These SNR losses become more significant at higher frequen-

cies when carrier wavelengths become smaller than the mechanical imperfections of the reflector.

This is the case in the Jet Propulsion Laboratory Deep Space Network plan to employ Ka-band

communications using 34 and i’o meter receiving antennas.

An array feed combining system for the recovery of the SNR loss due to antenna reflector de-

formation has been proposed and analyzed in [1]. In this system, a focal plane feed array is used to

collect the defocused signal fields. All the signaJ power captured by the feed array are then recov-

ered using real-time signal processing and signal combining techniques. In phase and quadrature

baseband signal samples are obtained from the downconverted  received signal of each of the array

feed elements md then are recombined after application of combiner weights. The optimum com-

/’ biner  weights that maximizes the combined signal SNR were derived in [1] under the assumption

that the white Gaussian noise processes in the received signals born different array elements are

mutually uncorrelated. These optimum weights depend 011 unknc)wn signal and noise parameters

that need to be estimated. The work in [1] proposed to estimate the optimum weights from the

observed residual carrier received signal samples using a nmximum likelihood (ML) estimation of

these unknown parameters. The actual combined signal  SNR in this uncorrelated  noises environ-

ment was alSO derived  in [1] when the estimated weights are used in place of the optimum weight
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coefficients.

The array feed combining system is currently being evaluated

antenna. Although the work in [1] assumed mutually uncorrelated

at the JPL DSS-13 34 meter

noise processes, experimental

data [2] indicates that the white noise processes in the received signals from different feed elements

are indeed correlated, with correlation coefficients of the order of 0.01 under clear sky conditions.

Since the noise in each of the array feed element signals consists of receiver white noise plus

noise due to background radiation, this small correlation is conjectured to be caused by near-field

atmospheric background noise. Although the observed correlation in [2] is quite small in the current

/’ array feed combifing  system, future planned improvements in the the receiver noise temperature

could magnify the effect of atmospheric background noise and result in considerably higher amounts

of correlation. Thus, it is important to determine the performance of the signal combining system

proposed in [1] when the white Gaussian noise processes in the signals from different array elements

are mutually correlated. That is the objective of this paper, which provides an exact analysis of

the combined signal SNR  performance in this correlated noises environment.

The performance analysis here considers only the signa~ combining algorithm proposed in [1],

which was designed to operate in the environment where the white Gaussian noise processes in

the signals from different array elements are mutually uncorrelated.  The effect of the correlation

is twofold. First, the optimum combining weights developed in [1] are no longer optimal in this

correlated noises environment. The other effect of this correlation is on the resulting combined

signal SNR performance. The analysis here shows that the combined signal SNR can either be

improved or degraded depending on the relation between the array signal and noise correlation

coefficient phases. Further performance improvement will require effective combining systems that

takes into azcount  the correlations between the array feed element noise processes. Our work on
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this problem is still in progress.

z Array Feed Signals and Combining Algorithm

Consider a

lation  with

K-element array and the NASA Deep Space Network standard residual carrier modu-

binary PSK modulated square-wave subcarrier [3]. The received signal from each array

element is down converted to baseband and sampled. The combining system proposed in [1] uses

only the residual carrier portion of the received signal spectrum to estimate the unknown parame-

ters in the combiner weights. The full spectrum mc)dulated  signals from the array elements, which

contains both the modulated sidebands as well as the residual carrier spectrum, are subsequently

combined. In this system [1], the higher bandwidth primitive baseband signal samples are low pass

filtered by averaging successive blocks of kfB samples to yield a full spectrum signal stream B

for each array element. Additive white Gaussian noise is assumed to be present in the primitive

baseband signal sequences from each of the array elements. Let

yk(~B) = v“[co$~+j4~B)5~7~~] +~k(~B), ~B = 1,2, . . . (1)

denote the stream B signal samples from the k-th array element. The complex signal parameters

(2)

represent the unknow signal amplitude and phase parameters induced by the antenna reflector

deformation. Moreover, 6 is the modulation index, s(i~) = +1 is the transmitted data and {nk(iB)}

is the zero mean white Gaussian noise corruption in the stream B signal samples from the k-th

array element. The primitive baseband signal samples are also more narrowly low-pass filtered by

averaging successive blocks of MA samples to yield a residual carrier signal stream A for each array
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element. Clearly MA > kfB and q = ~A/~B is the ratio of the bandwidth of stream B to stream

A. Let

denote the stream A signal

U~(iA) = V,, COS6 + ?n~(iA), iA = 1,2, . . . (3)

samples from the k-th array element. Here {rn~(iA)} is the zero mean

white Gaussian noise corruption in the stream A signal sartiples  from the k-th  array element.

Let ~T and ~+ denote the transpose and complex conjugate transpose of the matrix & re-

spectively. The white noise sequences corresponding to different array elements are assumed to be

correlated. To specify these correlations, consider

~(i~) =  (nl(i~) -00 n~(i~))~,

~(i~) =  (ml(iA)  -- -  ?n~(iA))T.

Then {~(iB )} and  {diA)} are each sequences  of i.i .d. zero l[~ean complex Gaussian random vectors

of dimension K. The respective covariance matrices

~B “ {  rBkj }  =  W(~B  )diB)+]

& = { TA~j  } =  E[n!(i~)m(iA)t]

of ~(i~) and ZLt(iA)  then specify the mutual correlations between the white noises in the signal

streams from different array elements. For example,  rBkj is the correlation between the noise vari-

ables nk(iB) and nj(iB ) in the stream B signals from the k-th and j-th  zuray elements respectively.

Moreover, define

(4)

to be the correlation  coefficient between the noise samples nk(i~) and ~j(i~). We shall assume w in

[1] that the complex Gaussian noise samples n~(iE?) and mk(i,4  ) each have statistically independent
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real and imaginary parts of equal variance. This assumption is not required for the following

analysis, but is made to maint~n  consistency with  the results reported in [1]” SO! 2% = ‘Bkk

a n d  2U;k  = rAkk are the respective variances of nk(iB) and mk(i,4  ), where a~k and ‘~k are the

respective variances of the real or imaginary parts. Because of the different averaging rates in

streams A and B on the primitive baseband signals, it follows that & = q&. Finally, these

different averaging rates also imply that n(i~) is independent of ~!(iB) provided that iA < iB and

the samples averaged to yield 2E(~A)  occurred  Prior  to the samples  averaged  to yield  n(~B ).

The complex combining weight coefficients Wk , 1< k < K given by

Wk =

were shown in [1] to maximize the ShTR of

v; v;— .  .—
2r7cr;k = 2u~k

(5)

the combiner output in the uncorrelated  noises case,

resulting in a maximum possible SNR equal to

(6)

That is, the optimum attainable SNR in the uncorrelated  noises case is equal to the sum of the

SNR’S of e~h of the feed array element outputs. The signal parameters Vk and the noise variances

~~k are unknown parameters that need to be estimated to obtain an estimate of the optimum

weight coefficients.

Assume that these unknown parameters are not random. The estimates for vk and u~k devel-

oped in [1] are univariate sampling estimates based on the stream A residual carrier signal samples

{Uk(iA )}. In the uncorrelated noises case, the stream A signal samples frcun different array elements

are statistically independent. Hence estimates of the weight coefficients ~)k based on these estimates

Of vk and a~k are also mutually  independent- However, in the correlated noises environment these

signal  streams are no longer  mutually independent and hence the resulting estimates for Wk are
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also no longer independent.  In order to put this dependence in the proper perspective for the SNR

performance analysis below, we will describe the estimation techniques developed in [1] in terms of

multivariate  sampling  estimates based on the vector of stream  A signal samples {g(iA)}  where

Instead of estimating Vk directly, consider estimating X~ ❑ vk cos 6. Define

~= (xl .. OXJ+.

Then it follows from (3) that {y(iA)}  is an i.i.d.  sequence of complex Gaussian random vectors

with mean ~ and CovarianCe matrix  &A. It follows from multivanate  statistical analysis [4], [5]

that based on observations {U(i,4 -- l),. . . ,~(i,4  – L)},

is the ML sample mean estimate of X and

(7)

(8)

is equal to (L – 1)/(L – 2) times the corresponding sample covariance estimate of&A. The approach

in [1] uses Xk(iA)  M the estimate of ,Xk and consequently Vk(iA) = ~k(iA )/cos  6 as the estimate of

Vk. Moreover, the k-th diagonal  element 2~~k(iA)  of &A(iA ) is used in [II as the estimate of 2ojk!

which is the k-th diagonal eleraent  of &. Finally the estinlate  given by

was shown in [1] to be an unbiased estimate of the optimum combining weight coefficient

by (5) in the uncorrelated  noises case. These weight coefficient estimates are used in
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window structure to produce the following combiner output sequence

K
z(iB) =  ~ ~k(~A) !/k(~B), (lo)

k=l

where ;A is the largest integer less than iB so that the residual carrier signal samples {U~(;A –

1) , . . . . U~(;A – L)} used for estimating ~k(;A ) occur before the full  spectrum signal sample  yk(iB ).

3 SNR Performance Analysis

The objective is to determine the actual SNR of the combiner output in the correlated noises

environment. From (1) and (10), the combiner output can be written as:

-z(iB) = sc(i~) + ~c(i};),

where
K

&(iB) = ~tik(iA)vk@(iD)6
k=l

and
K

~c(iB) = ~ ~k(;A) ~k(iB) (13)
k=l

are the signal and noise components respectively. Since the residual carrier signal samples used for

(11)

(12)

the estimates tik(~A ) occur prior to the full spectrum signal samples yk(i~ ), and since {~~(iA)} and

{nj(iB)}  are i.i.d. sequences, it fo~ows  that ~k(jA ) and nj (i~) are uncorrelated  random variables

for every k and j. Each ~j(iB) has zero mean. It then follows from (13) and (12) that nc(i~) also

has zero mean and is moreover uncorrelated with s.(i~). Let Var[Z] = EIIZ – E[Z] 12] denote the

variance of a complex random variable Z. Thus it follows from (11) that the actual SNR of the

combiner signal output z(i~) given by (10) can be written as:
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It is well known [4], [5] that &~A) and A~(iA)  are statistically independent and that 2(L –

2)~~k(iA)/~~k h= a c~-square distribution  with 2(L – 1) degrees  of freedon~. As a  result ‘f ‘hese

properties, it fo~ows from (9) in a derivation sifilar  tO [l] that, for 15 k S ~,

where {wk } are the optirnzd cc)mbining weights given by (5). That is, the estimated weight coeffi-

cients are unbi=ed  as in the Uncorrelated  noises case [1]. It then follows from (1’2),  (15), (5) and

(6) that for both the correlated and uncorrelated  noises cases,

lE[sC(iB)]l  = ]eJs(;B)6 $; E[tik(jA)]Vkl  = ~.
k=l

Consider next the variances of s~(i~)  and n,(iEI) in (14). lJsing  (12) and (15), we have

(16)

(17)

where wk is given by (5). Consider first the case when the Gaussian noise processes in the signals

from different array elements  are mutually uncorrelated. S ince  ~k(j,4) and @j(~A) are PairWise

independent for k # j in this case, the variance of sc(il~)  can be written as

K

Let

Combining (17), (18) and (19) then yields

Var[sC(i~)]  = Varu[.sC(i~))  + J%.

(18)

(19)

(20)



Recall that rzc(i~) has zero mean and ti~(;,4) is statistically independent of ~j(iB) for all k and j.

Then similar to the derivation leading to (20) we can write

Var[rzC(i~)] =  ~ ~ E[tik(;A)ti~(;~)]  E[n~(iB)n~(iB)]

where

and where

k=l j=l

= vm[~c(i~)]  + A,

(k=] j=k+l

(21)

(22)

var~[nc(i~)] = ~ E[[tik(;A)12] Var[lnk(i~)12]
k=]

is the variance of n~(i~  ) in the uncorrelated noises case. It then follows from (14) and (16) that

the actual SNR of the combiner output in the uncorrelated  noises case is given by

2
—— —

7LL = Varu[sC(iEJ] ~ Varu[nC(iB  )]’

So it foLlows  from (14), (16), (20), (21) and (23) that

u
( )

1——
7ML=7ML l+d ‘

(23)

(24)

where

d= /3 f f12—. —
Var~[sC(i~ )] + Var~[r/C(i~)]”

(25)

The factor 1/(1 + d) in (24) represents the improvement in SNR caused by the correlation between

the noises in the signals received from different array elelnents.  Note in particular that ~1 and

~2 can be either positive or negative in value. Hence a SNR improvement is obtained when d is

negative and a degradation otherwise.

Expressions for VarU[~c(iE)]  and Varu[nC(i~)]  are given in [I]. Thus we need only determine

PI and ~z to obtain d and thereby obtain an expression for 7ML from (24). In order to do this we

9



need only obttin an  expression for E[tik(~A)ti~(iA)]  when k # j. Using the property that ~(iA) is

statistically independent of &(iA), it then follows from (9), (7) and (8) that for k # j,

(26)

S ince  ~(iA ) h= mean  X and Covariance  matrix ~&A = ~,&B [51, it follows that

Recall that 2(L – 2)~ik(~A) is the ~-th diagonal element of the matrix (L – 2)AA6A)0  Let

[1

A l l  A1 2

~=

A;2 A22

be a 2 x 2 matrix where AII and AM are the k-th  and j-th diagonal elements respectively and AIZ

is the element in the k-th row and ~-th column of (L — 2)J”LA6A).  SO We have

(28)

Complex multivariate statistical sampling theory [4] [5] ha shown that 4. has the same distribution

as that of z~=-l] ~i~i+ where {~i} is a sequence of i.i.d. zero rncan cc)mplex Gaussian random

vectors with covaria-nce  matrix E @ven by

I

rAkk rA k j
g=

T~~j T,4jj

(29)

This type of distribution is called a complex Wishart distribution [4], [5] with parameters ~ and

(L - 1). Denote the determinant and trace of a matrix ~ by ]Al and tr(~) respectively. Then if

L ~ 4, the joint Wishart probability density of (AII, Ax2, A12) is given by [4]

(30)
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for AII, A22 2 0 and /A1212 < A11A22,  where I’(z)  is the Gamma function. The derivation in

Appendix A obtains the expression given by (49) for E[l/A11Aa2] starting from (3o). Define for

L>4and OSz <l,

(31)

Assume that the correlation coefficients between noise components of the k-th and j-th array

e l e m e n t  o u t p u t s  pBkj @ven by (4) are ~ways  less than oIie in magnitude.  Then,  by using (2fJ),

(49), (31: and (27), (26) can be written as

(32)

When lpBkj[  <1 and L 24, we obtain, by using (2), (4), (5) and (32) in (19) and (22),

A + P2 =
2iijgl{’L(’’Bk’’2) [;~wM:i$:i$ -

+
(

1
1  +  – — - - -

)

\vkl\~l

)
lpBkjl  Cos($kj  -  vBkj)

_  !vk/21:[2 , (33)
qL COS26 2uBkuB1 4U~~0~j

where $?”’j be the phase Of the correlation coefficient P“kj between n’(if~  ) and n’(iB ) and where

is the phase difference between the signal components of the k-th and j-th array elements. Finally,

by using equations (44) and (48) of [1] for VarU[5.(iB)]  and Varu[nC(iB)]  respectively, (25) can be

written as

d = ———–- 01 i- P2. — — .  ———.-.—— (34)

(=) [7+ (7’+ m/TJ@s2Jl  + (Z?3) m!=, (#+)2’

where /?l + /32 is given by (33) and 7 is given by (6). In order to arrive at an explicit expression for

7ML, we note that equations (44) and (48) of [1] in (23) gives

75L = — — — – . 7 2

-——
‘ - — —” -  -y-3 “

( )
(E) [7 + (7 + ~f)/z’Lc~s2~l  + (A) X5=1 ‘%%

(35)
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So the wtual SNR of the combiner output in the correlated noises case can be determined

from (24), (34) and (35) when L >4 and [~Bkjl  < 1. The two measures of particular interest in

understanding the SNR performance are 1/(1 + d) and 7ML/7.  The measure 1/(1 + d) represents

the gain in SNR caused by the

as the correlation gain. In the

correlation between

uncorrelated noises

the array element noises and will be referred to

case, 7/7jwL represents the loss in SNR due to

the combining algorithm since 7 is the mtimum  possible achievable SNR. We shall adopt the same

measure here and define 7A4L/y M the ~mbining  gain for ease of comparison to the uncorrelated

noises case. The combining gain also represents the gain in SNR over the sum of SNRS of the

individual array element outputs.

Let us examine the char~.teristics  of the SNR perfornlance. In the uncorrelated  noises case,

the actual SNR  performance 7fiL converges tO the m~mum possible SNR achievable 7 aS the

number of samples L approaches infinity. It is interesting to also examine the combining gain in

the correlated noises c~e aS the number of samples approaches infinity. It is shown in Appendix

B that fL(z) -+ 1 aS L ~ 00 for O S z <1. Assume that the pairwise noise correlation coefficients

pBkl are all leSS than one in magnitude. Then, taking the limit as L -+ ~ in (34) and (33) yields

(36)

So the Umiting  due of d can a.lso be of either sign, positive or negative. In fact, the limiting value

is always negative if ~kj – ~Bkj = ~ for ~ k # ~, and  alwaYs positive  if ~kj  – ~Bkj = o for ~ k # j.

It then follows from (24) that as L -+ co, the limiting value of the actual SNR performance 7ML

in the correlated noises case can be either greater or smaller than the maximum possible SNR 7

in the uncorrelated noises case, depending on the Ielation  between the signal and noise correlation

phases. This is not really that surprising, since the maximum possible SNR performance in the
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correlated noises case is generally nc~t equal to 7.

Bounds on the actual SNR perfc)rmance  YML which depend on a fewer number of parameters

than the exact expression are also useful. We shall derive upper and lower bounds that depend only

on the maximum magnitude of the noise correlation coefficients and on 7, the sum of the SNRS of

the individual array element outputs. We first note the following inequalities derived in [1] for this

purpose:

~=wa2@$92”2
Similar to the left hand inequality of (37), we have

(37)

(38)

Applying the left hand inequ:dity  of (37) and the inequality (38) then gets the following upper

bounds:

and

Let

(39)

(40)

be the maximum magnitude of the correlation coefficients between array element noise components.

Note from (33) that the worst case phase resulting in the largest possible o! occurs when flkj – ~Bkj =

O for all k # j. Hence, application of the left hand inequality in (37), the inequalities (39) and (4o),

and the bounds (56) on fL(x) given in Appendix B, yields the following upper bound on the worst

case d:

~ < (L - 2)(K -- l)Pmaz [y + (KPmar + 7)/7jI, COS26] + 7’(1 - I / K )— — — . -—— —_—
(L - 2)[7  + (7 + K)/qLcos26] + 7 2 / K  ‘“

—..—— (41)
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Similarly, since the best c~e ph~~e  resulting in the most negative possible d occurs when ‘k] –

VBkj = n for W k # ~, the following lower bound on the best  case d can be obtained:

(L - 2)(K - 1)p~am7 [1 + I/qL COS26]- —— ——
d 2 (L --2) [7 + (7 + K)/@co~T~i”

(42)

Finally, using the inequalities (37) in (35) yields the following bounds on the actual SNR perfor-

mance ~fi~ in the uncorrelated noises case:

(43)

and

(L - 3 ) 72

-.—. ——
vfi~ 2 ~; – 2) [7 + (7 + K)/qL COS28] +72

An upper bound on the actual SNR performance 7ML is obtained by

(44)

using the lower bound (42)

on d and the upper bound (43) 011 vfiL in (24).

using instead the upper bound (41) on d and the

A Numerical Example

Similarly a lower bound on ~ML is obtained by

lower bound (44) on 7~L.

We consider here the numerical example in [1] of using a K = 7 element array feed in the JPL

Deep Space Network. Ln this

To = 2.5 x 10-8 seconds are

bandwidth 2 x 106 Hz, which

example, a modulation index 6 = 80° and a primitive sample period

assumed. The full spectrum modulation signal is assumed to be of

yields MB = 20. Moreover, the ratio of the full spectrum bandwidth

to the residual carrier bandwidth q = MA/MB = 200. Nominal I’T/No of 55 and 65 dB-Hz are

considered with corresponding 7 = (F’T/No)MBTo. Upper and lower bounds on the combining gain

7ML/7  are shown in Figure 1 as a function of the number of samples L averaged to obtain the

weight estimates. Here PT/No = 55 dB-Hz and maximum correlation coefhcient magnitudes p~az
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of 0.01 and 0.02 are considered. Convergence of these bounds to within 0.01 dB of their limiting

values occurs at about L = 3000 samples. This corresponds to an averaging time of MATOL = 0.3

seconds and supports real-time operations for antenna deformation compensation. The limiting

upper bounds on the combining gain are about 0.26 dB and 0.56 dB for pm.= equal to 0.01 and

0.02 respectively. The corresponding lower bounds on the combining gain are -0.26 dB and -0.50

dB respectively. The actual limiting value for the combining gain, which is given by (36), will

fall between these bounds. Similar results are shcwm in l’igure 2 for l~/NO = 65 dB-Hz,  where

convergence of the bounds occur at smaller values of L to virtually the same limiting values as the

F’~/lVo = 55 dB Hz case.

Figures 3 and 4 plot upper and lower bounds cm the cc)rrelation  gain 1/(1 + d) for pm~ equal

to 0.01 and 0.02. Figure 3 considers PT/No  = 55 dB-Hz and Figure 4 PT/No = 65 dB-Hz. The

limiting value of these bounds are identical to the limiting values of the corresponding bounds on

the combining gain. The differences between the behavior of the lower bounds at P~/No = 55 dB-

Hz and those at l’T/No  = 65 dB-Hz is due to the lcmseness  of these lower bounds at small values of

L. For large number L of samples, the upper and lower bcmnds on the combining gain diverge as

the maximum correlation coefficient magnitude increases. This can be seen from Figure 5, which

shows the upper and lower bounds on combining gain for l>~/No := 55 dB-Hz at L = 5000 samples

as pma= increases from 0.01 tcl 0.1. The upper bound increases from 0.26 dB to 3.96 dB and the

lower bound decreases from -0.26 dB to -2.05 dB in this range of p~m. The observed correlation

coefficients of 0.01 magnitude in [2] were obtained in clear sky conditions with a receiver noise

temperature of 90° K and a system noise temperature of 120° K. Improvement of the receiver noise

temperature to 25° K will increase the correlation coefficient magnitude to about 0.02. As noted

above, a maximum possible improvement of 0.56 dB and a maximum possible degradation of -0.50
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dB results. Preliminav  meuurements  at DSS-13 indicate that even larger amounts of correlation

occur under adverse weather conditions. This will result in even larger potential improvement or

degradation of SNR performance relative to the uncorrelated noises case.

5 C o n c l u s i o n

An array feed combiner systexn for the recovery of SNR loss due to antenna reflector deformation

has been implemented and is currently being evaluated on the Jet Propulsion Laboratory 34 meter

DSS-13  antenna. The current signal combining algorithms are optimum under the assumption

that the white Gaussian noise processes in the received

uncorrelated. Experimental data at 11 SS-13 indicate that

signals from different array elements are

these noise processes are indeed mutually

correlated. The main restit  of this paper is an analytical derivation of the actual SNR performance

of the current suboptimal  signal combining algorithm in this correlated noises environment. The

analysis here shows that the combined signal  SNR can either be improved or degraded depending on

the relation between the array signal and noise correlation coefficient phases. Further performance

improvement will require the development of effective combining systems that takes into account

the correlations between the array feed element noise processes.
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Appendix A: Derivation. of E[&i-].

We first obtain the joint probability density function p(A1l,  Azz) of (All, A22) by integrating (30)

over the complex region~~ = {Alz : IA121 < ~~~~} of values taken on by A12. Let ~ = {Gij} =

~-1 and convert the variables Glz and A12 into polar coordinates: Glz = lG12\eJ@  and A12 = re~d.

Then it follows from (30) that

p(All, A22)
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~-( GIAI+G&)

/
(A,,h - [A1,12)~-  3  e-’~’(WAlZl ~A1,

= ~r(~ – l)r(~ – 2)l>&-1  s
~–(G1]A11+G22A22)

/

~ [J
27!

r(All A22 – 7“’)L-3 1
. 2,1 G,21c044-+) ~~ ~r— .= e

~r(~ – l)r(~ – 2)lj:[L-1  o 0

2e–(Gll  A11+G22J422) JWmG
2 ‘-310(2rlG121) cfrT(A1lAzz  -- r ) (45)

= r(L – l)r(~ – 2)@-’ o

where 10(z)  is the zero-order Modified Bessel Function of the First Kind which has series represen-

tation

(46)

By making a change of the variable of integration, using the series (46) and the integral relation

(3.251) of [6], the integral in (45) can be written as:

I~A22 2 ‘-310(2r[~~121) drT(A1lAzz  – r )
o

== (A,,A2,) JL.-z ~ (44m4221G212)k  1 (l _ ~2)~-3~2k~l d
~!- ‘- ~

s
k=o

~ (A11A221G1212)k r(k + l)r(~ - 2)
[

= (A,, A,2)~--2 ~ ~, —- —
1

.— .—. .— ,

k=O 2r(k+ L-1)
(47)

Substitution of (47) into (45) and using the fact that r(n) = (n – 1)! for integer n obtains

(A,,A22) L - 2  e–(G11AII+G22A22)  w (&1 A221&12)k
p(All,A22) = ——- —X

—— -.————. .—..
(L - 2)! &:l k =0 k!(k + L -~”

(48)

Using (48), integrating term by term in the series, and obtaining ~ := x-l and [~1 directly from

(29) in terms of pBkj, TBkk and  ~Bjj  yields

[ 1
1

E
1 c% k+&3

)( )

(M)k— . ——=
A11A22 (L ‘- 2)l~lL-@@zz)L-2  & %+L–2

q2(l ‘-  l~~kj12)L-3  <
)(

k i $-3  lPBkj12k— — .:=
)

— .—. .—. - .
(.L -  z) TBkkrBjj  ~~o k+L–2

(49)

The series in (49) cm be shown to converge by using the ratio convergence test whenever lpBkj  I <1.
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Appendix B: Bounds on ~L(x).

Let L a 4 and O < z <1. We will obtain upper and lower bounds on ~L(z) that are asymptotically

tight in the limit as L --T cm. First note that

and that for k > 0,

L – 3 k+ L-3<1
—  < ——-
L – 2 k+ L - 2 - ”  “ (51)

Using these bounds (51) in (5o) gets

Next, by using the bounds (52) in (31), we get the follc)wi],g:

(1 - +“” ‘fj (k+ ~ -4) z’ < fL(~),
k=Q

fL(~) < (;%) (1 - z)”-’ ~ (k+: ‘-  4) zk
, k=o

It can be shown [7] that for O S z <1,

(52)

(53)

(54)

~ (k+i-4) ‘k = (13’-”3 (55)

Using (55) in (53) and (54) then obtains, for O < z <1,

(56)

The upper and lower bounds given in (56) are both asymptotically tight in the limit  as L --t m. So

we can conclude that for O ~ x < 1, ~L(z) -t 1 as L -+ W, where the convergence is uniform in z.
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